Investigates musculoskeletal computer modeling and its applications to human locomotion.
Teaching Information
Teaching Interests
Biomechanics of human locomotion, dynamics of multi-body systems, static and dynamic optimization, control theory and applications.
Research Information
Research Interests
Human musculoskeletal modeling and development of control systems for rehabilitation of individuals with spinal cord injury and other balance disorders. Design of rehabilitation devices for physically challenged individuals.
My research interests is in the area of musculoskeletal computer modeling and its applications to human locomotion. I develop and solve large scale dynamic and static optimization problems that arise in the study of human locomotion. These include applications to the control of human bipedal standing and also control of seated postures for individuals with spinal cord injury and other balance disorders. The models I develop help other researchers and clinicians to resolve issues and get insight about the workings of the intact human central nervous system. The idea is to get as much information as possible without having to resort to time-consuming and often dangerous experiments with human subjects. I also contribute to projects involving the design of rehabilitation devices for physically challenged individuals.
Publications
- Hnat, S., Audu, M. L., Triolo, R. L., & Quinn, R. D. (2021). Estimating Center of Mass Kinematics During Perturbed Human Standing Using Accelerometers. Journal of Applied Biomechanics.
- Liu, C., Audu, M. L., Triolo, R. L., & Quinn, R. D. (2021). Neural Networks Trained via Reinforcement Learning Stabilize Walking of a Three-Dimensional Biped Model with Exoskeleton Applications. Frontiers in Robotics and AI.
- Friederich, A., Audu, M. L., & Triolo, R. L. (2021). Characterization of the Force Production Capabilities of Paralyzed Trunk Muscles Activated with Functional Neuromuscular Stimulation in Individuals with Spinal Cord Injury. IEEE Transactions on Biomedical Engineering, 68 (8), 2389-2399.
- Nandor, M., Kobetic, R., Audu, M. L., Triolo, R. L., & Quinn, R. D. (2021). A Muscle-First, Electromechanical Hybrid Gait Restoration System in People with Spinal Cord Injury. Frontiers in Robotics and AI.
- Bheemreddy, A., Friederich, A., Lombardo, L., Triolo, R., & Audu, M. L. (2020). Estimating total maximum isometric force output of trunk and hip muscles after spinal cord injury.. Medical & biological engineering & computing, 58 (4), 739-751.
- Reyes, R., Kobetic, R., Nandor, M., Audu, M. L., Quinn, R. D., & Triolo, R. D. (2020). Effect of Joint Friction Compensation on a" Muscle-First" Motor-Assisted Hybrid Neuroprosthesis. Frontiers in Neurorobotics, 14 , 101.
- Odle, B., Lombardo, L., Audu, M. L., & Triolo, R. L. (2019). Experimental Implementation of Automatic Control of Posture-Dependent Stimulation in an Implanted Standing Neuroprosthesis. Applied Bionics and Biomechanics.
- Liu, C., Lonsberry, A., Nandor, M., Audu, M. L., Lonsberry, A. L., & Quinn, R. D. (2019). Implementation of deep deterministic policy gradients for controlling dynamic bipedal walking. Biomimetics, 4 (1), 28.
- Armstrong, K., Lombardo, L., Foglyano, K., Audu, M. L., & Triolo, R. L. (2018). Automatic application of neural stimulation during wheelchair propulsion after SCI enhances recovery of upright sitting from destabilizing events. Journal of NeuroEngineering and Rehabilitation, 15:17
- Audu, M. L., Odle, B. L., & Triolo, R. L. (2017). Control of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury. Medical & Biological Engineering & Computing.
- Hunt, A., Odle, B., Lombardo, L., Audu, M. L., & Triolo, R. L. (2017). Reactive stepping with functional neuromuscular stimulation in response to forward-directed perturbations. Journal of NeuroEngineering and Rehabilitation.
- Crawford, A., Armstrong, K., Loparo, K. A., Audu, M. L., & Triolo, R. L. (2017). Detecting destabilizing wheelchair conditions for maintaining seated posture. Disability and Rehabilitation: Assistive Technology.
- Audu, M. L., Audu, M. L., & Triolo, R. L. (2017). Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury. Medical Engineering & Physics, 42 , 13-25.
- Chang, S., Nandor, M., Li, L., Kobetic, R., Foglyano, K., Schnellenberger, J., Audu, M. L., Pinault, G. L., Quinn, R. D., & Triolo, R. D. (2017). A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Journal of neuroengineering and rehabilitation, 14 (1), 48.
- Audu, M. L., Kobetic, R. L., Audu, M. L., Quinn, R. D., & Triolo, R. D. (2016). Powered Lower-Limb Exoskeletons to Restore Gait for Individuals with Paraplegia – a Review. Case Orthopedic Journal, 12 (1), 75-80.
- Audu, M. L., & Triolo, R. L. (2016). Simulating the restoration of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury. Medical & Biological Engineering & Computing, 54 (1), 163-176.
- Audu, M. L., Lombardo, L. L., Schnellenberger, J. L., Foglyano, K. L., Miller, M. L., & Triolo, R. L. (2015). A neuroprosthesis for control of seated balance after spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 12:8 , 1-12.
- Audu, M. L., & Triolo, R. L. (2015). Intrinsic and Extrinsic Contributions to Seated Balance in the Sagittal and Coronal Planes: Implications for trunk control after Spinal Cord Injury. Journal of Applied Biomechanics, 31 (4), 221-228.
- Nataraj, R., Audu, M. L., & Li, Z. L. (2015). Digit mechanics in relation to endpoint compliance during precision pinch. Journal of Biomechanics, 48 , 672-680.
- Foglyano, K., Kobetic, R., To, C., Bulea, T., Schnellenberger, J., Audu, M. L., Nandor, M. L., Quinn, R. D., & Triolo, R. D. (2015). Hip Flexion Power Assist System for Use in Hybrid Neuroprostheses. Applied Bionics and Biomechanics, 205104 , 1-8.
- Nataraj, R., Audu, M. L., & Triolo, R. L. (2014). Modified Newton-Raphson method to tune feedback gains of control system for standing by functional neuromuscular stimulation following spinal cord injury. Applied Bionics and Biomechanics, 11 , 169-174.
- Hopfer, U., Triolo, R., Elias, A., Kilgore, K., DiMarco, A., Bogie, K., Vette, A., Audu, M. L., Kobetic, R. L., Chang, S. L., Chance, M. L., Dukelow, S. L., Bourbeau, D. L., Brose, S. L., Gustafson, K. J., Kiss, Z. J., & Mushahwar, V. J. (2014). Functional electrical stimulation and spinal cord injury.. Physical medicine and rehabilitation clinics of North America, 25 (3), 631-54, ix.
- Murphy, J., Audu, M. L., Lombardo, L. L., Foglyano, K. L., & Triolo, R. L. (2014). Feasibility of closed-loop controller for righting seated posture after spinal cord injury.. Journal of rehabilitation research and development, 51 (5), 747-60.
- To, C., Kobetic, R., Bulea, T., Audu, M. L., Schnellenberger, J. L., Pinault, G. L., & Triolo, R. L. (2014). Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia.. Journal of rehabilitation research and development, 51 (2), 229-44.
- Bulea, T., Kobetic, R., Audu, M. L., Schnellenberger, J. L., Pinault, G. L., & Triolo, R. L. (2014). Forward stair descent with hybrid neuroprosthesis after paralysis: Single case study demonstrating feasibility.. Journal of rehabilitation research and development, 51 (7), 1077-1094.
- Audu, M. L., Gartman, S. L., Nataraj, R. L., & Triolo, R. L. (2014). Posture-dependent control of stimulation in standing neuroprosthesis: simulation feasibility study.. Journal of rehabilitation research and development, 51 (3), 481-96.
- Triolo, R., Bailey, S., Lombardo, L., Miller, M., Foglyano, K., & Audu, M. L. (2013). Effects of intramuscular trunk stimulation on manual wheelchair propulsion mechanics in 6 subjects with spinal cord injury. Arch Phys Med Rehabil, 94 (10), 1997-2005.
- Bulea, T., Kobetic, R., Audu, M. L., & Triolo, R. L. (2013). Stance controlled knee flexion improves stimulation driven walking after spinal cord injury. J Neuroeng Rehabil, 10 , 68.
- Kern, N., Triolo, R., Kobetic, R., Audu, M. L., & Quinn, R. D. (2013). A convertible spinal orthosis for controlled torso rigidity. Applied Bionics and Biomechanics, 10 (1), 59–73.
- Triolo, R., Bailey, S., Miller, M., Lombardo, L., & Audu, M. L. (2013). Effects of stimulating hip and trunk muscles on seated stability, posture, and reach after spinal cord injury. Arch Phys Med Rehabil, 94 (9), 1766-75.
- Nataraj, R., Audu, M. L., & Triolo, R. L. (2013). Center of mass acceleration feedback control of standing balance by functional neuromuscular stimulation against external postural perturbations. IEEE Trans Biomed Eng, 60 (1), 10-9.
- Bulea, T., Kobetic, R., Audu, M. L., Schnellenberger, J. L., & Triolo, R. L. (2013). Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis. IEEE Trans Neural Syst Rehabil Eng, 21 (1), 141-51.
- Nataraj, R., Audu, M. L., Kirsch, B. F., & Triolo, R. F. (2012). Center of mass acceleration feedback control for standing by functional neuromuscular stimulation: a simulation study. J Rehabil Res Dev, 49 (2), 279-96.
- To, C., Kobetic, R., Bulea, T., Audu, M. L., Schnellenberger, J. L., Pinault, G. L., & Triolo, R. L. (2012). Sensor-Based Stance Control With Orthosis and Functional Neuromuscular Stimulation for Walking After Spinal Cord Injury. Journal of Prosthetics & Orthotics, 24 (3), 124-132.
- Nataraj, R., Audu, M. L., & Triolo, R. L. (2012). Center of mass acceleration feedback control of functional neuromuscular stimulation for standing in presence of internal postural perturbations. J Rehabil Res Dev, 49 (6), 889-911.
- Nataraj, R., Audu, M. L., Kirsch, B. F., & Triolo, R. F. (2012). Trunk acceleration for neuroprosthetic control of standing: a pilot study. J Appl Biomech, 28 (1), 85-92.
- Bulea, T., Kobetic, R., To, C., Audu, M. L., Schnellenberger, J. L., & Triolo, R. L. (2012). A Variable Impedance Knee Mechanism for Controlled Stance Flexion During Pathological Gait. .
- Nataraj, R., Audu, M. L., & Triolo, R. L. (2012). Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation. J Neuroeng Rehabil, 9 , 25.
Education
Additional Information
.