Roger Quinn, PhD

Professor
Department of Mechanical and Aerospace Engineering
Case School of Engineering
Director
Biologically Inspired Robotics
Case School of Engineering

Develops neural and mechanical models of animals and uses data to design and control robots and exoskeletons

Teaching Information

Teaching Interests

dynamics, vibrations, robotics

Research Information

Research Interests

  • Biologically Inspired Robotics
  • Computational Neuroscience
  • Agile Manufacturing Systems
  • Vibration and Control

Awards and Honors

Distinguished University Professor , ÐÇ¿Õ´«Ã½
2022
1st place, Annual ION Autonomous Snow Plow Competition, Toronto, Canada, January 2019, Institute on Navigation
2019
1st place, Annual ION Autonomous Snow Plow Competition, Toronto, Canada, January 2019, Institute on Navigation
2019
Best Poster Award, Living Machines Conference
2016
2nd place, Annual ION Autonomous Snow Plow Competition, St. Paul, MN, January 2016, Institute on Navigation
2016

Publications

Patents Received

2014, "Power assisted orthosis with hip-knee synergy" 14/293,610, , Ronald Triolo, Rudi Kobetic, Curtis To, Musa Audu, Thomas Bulea, & Mark Nandor.
2013, "Biologically inspired gripping device " 8,500,179, , Hillel Chiel, Randall Beer, Elizabeth Mangan, & Gregory Sutton.
2012, "Apparatus and method for locomotion" , , Hillel Chiel, & Alexander Boxerbaum.
2007, "Highly Mobile Robots that Run and Jump" 7,249,640, , Andrew Horchler, Bram Lambrecht, & Jeremy Morrey.
2005, "Vehicle with Compliant Drive Train" 6,964,309, , Daniel Kingsley, John Offi, & Roy Ritzmann.

Patents Pending

2011, "Compliant back brace and ankle orthosis" CWR-019120US, , Nicole Kern, , Arkady Polinkovsky, & Ronald Triolo.

Publications

  • Hnat, S., , , &  (2021). Estimating Center of Mass Kinematics During Perturbed Human Standing Using Accelerometers. Journal of Applied Biomechanics.
  • Liu, C., , , &  (2021). Neural Networks Trained via Reinforcement Learning Stabilize Walking of a Three-Dimensional Biped Model with Exoskeleton Applications. Frontiers in Robotics and AI.
  • Nandor, M., Kobetic, R., , , &  (2021). A Muscle-First, Electromechanical Hybrid Gait Restoration System in People with Spinal Cord Injury. Frontiers in Robotics and AI.
  • Sutton, G., Szczecinski, N., , & Chiel, H. D. (2021). Neural control of rhythmic limb motion is shaped by size and speed. .
  • Kandhari, A., Wang, Y., Chiel, H., , &  (2020). An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots. Soft Robotics.
  • Moses, K., Willis, M., &  (2020). Biomimicry of the Hawk Moth, Manduca sexta (L.), Produces an Improved Flapping-Wing Mechanism. Biomimetics, 5 (2), 25.
  • Pickard, S., , & Szczecinski, N. D. (2020). A dynamical model exploring sensory integration in the insect central complex substructures. Bioinspiration \& biomimetics, 15 (2), 026003.
  • Naris, M., Szczecinski, N., &  (2020). A neuromechanical model exploring the role of the common inhibitor motor neuron in insect locomotion. Biological cybernetics, 114 (1), 23--41.
  • Szczecinski, N., , & Hunt, A. D. (2020). Extending the Functional Subnetwork Approach to a Generalized Linear Integrate-and-Fire Neuron Model. Frontiers in Neurorobotics, 14 , 92.
  • Reyes, R., Kobetic, R., Nandor, M., , , &  (2020). Effect of Joint Friction Compensation on a" Muscle-First" Motor-Assisted Hybrid Neuroprosthesis. Frontiers in Neurorobotics, 14 , 101.
  • Stark, H., Fischer, M., Hunt, A., Young, F., , & Andrada, E. D. (2020). A three-dimensional musculoskeletal model of the dog. bioRxiv.
  • Goldsmith, C., Szczecinski, N., &  (2020). Neurodynamic modeling of the fruit fly Drosophila melanogaster. Bioinspiration \& biomimetics, 15 (6), 065003.
  • Hilts, W., Szczecinski, N., , & Hunt, A. D. (2019). A Dynamic Neural Network Designed Using Analytical Methods Produces Dynamic Control Properties Similar to an Analogous Classical Controller. IEEE Control Systems Letters, 3 (2), 320-325.
  • Kandhari, A., Mehringer, A., Chiel, H., , &  (2019). Design and actuation of a fabric-based worm-like robot. Biomimetics, 4 (1), 13.
  • Kandhari, A., Mehringer, A., Chiel, H., , &  (2019). Design and Actuation of a Fabric-Based Worm-Like Robot. Biomimetics, 4 (1), 13.
  • Deng, K., Szczecinski, N., Arnold, D., Andrada, E., Fischer, M., , & Hunt, A. D. (2019). Neuromechanical Model of Rat Hindlimb Walking with Two-Layer CPGs. Biomimetics, 4 (1), 21.
  • Liu, C., Lonsberry, A., Nandor, M., , Lonsberry, A. L., &  (2019). Implementation of deep deterministic policy gradients for controlling dynamic bipedal walking. Biomimetics, 4 (1), 28.
  • Naris, M., Szczecinski, N., &  (2019). A neuromechanical model exploring the role of the common inhibitor motor neuron in insect locomotion. Biological Cybernetics.
  • Young, F., Rode, C., Hunt, A., &  (2019). Analyzing Moment Arm Profiles in a Full-Muscle Rat Hindlimb Model. Biomimetics, 4 (1), 10.
  • Szczecinski, N., &  (2018). Leg-local neural mechanisms for searching and learning enhance robotic locomotion. Biological Cybernetics, 112 (2-Jan), 99-112.
  • Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., &  (2018). Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspiration and Biomimetics, 13 (2).
  • Rubeo, S., Szczecinski, N., &  (2018). A Synthetic Nervous System Controls a Simulated Cockroach. Applied Sciences, 8 (1), 6.
  • Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., &  (2018). Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspiration \& biomimetics, 13 (2), 026003.
  • Kandhari, A., Huang, Y., , Chiel, H. A., &  (2018). Body stiffnesses in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspiration & Biomimetics, 13 , 026003.
  • Webster-Wood, V., , , Chiel, H., &  (2017). Organismal engineering: Toward a robotic taxonomic key for devices using organic materials. Science Robotics, 2 (12).
  • Szczecinski, N., Hunt, A., &  (2017). Design process and tools for dynamic neuromechanical models and robot controllers. Biological Cybernetics,&²Ô²ú²õ±è;111&²Ô²ú²õ±è;(1),&²Ô²ú²õ±è;105–127.
  • Szczecinski, N., Getsy, A., Martin, J., Ritzmann, R., &  (2017). Mantisbot is a robotic model of visually guided motion in the praying mantis. Arthropod Structure and Development.
  • Chang, S., Nandor, M., Li, L., Kobetic, R., Foglyano, K., Schnellenberger, J., , Pinault, G. L., , & Triolo, R. D. (2017). A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Journal of neuroengineering and rehabilitation, 14 (1), 48.
  • Szczecinski, N., Hunt, A., &  (2017). A Functional Subnetwork Approach to Designing Synthetic Nervous Systems That Control Legged Robot Locomotion. Frontiers in Neurorobotics, 11
  • Moses, K., Michaels, S., Willis, M., &  (2017). Artificial Manduca sexta forewings for flapping-wing Micro Aerial Vehicles: How wing structure affects performance. Bioinspiration and Biomimetics.
  • Hunt, A., Szczecinski, N., &  (2017). Development and Training of a Neural Controller for Hind Leg Walking in a Dog Robot. Frontiers in Neurorobotics, 11
  • Szczecinski, N., &  (2017). Template for the neural control of directed stepping generalized to all legs of MantisBot. Bioinspiration and Biomimetics, 12 (4).
  • Lin, W., Szczecinski, N., &  (2017). A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model. Bioinspiration and Biomimetics.
  • Szczecinski, N., Hunt, A., &  (2017). Design methodology for synthetic nervous systems that control legged robot locomotion. Frontiers in Neurorobotics.
  • Szczecinski, N., &  (2017). Leg-local neural mechanisms for searching and learning enhance robotic locomotion. Biological Cybernetics.
  • , Kobetic, R. L., Audu, M. L., , & Triolo, R. D. (2016). Powered Lower-Limb Exoskeletons to Restore Gait for Individuals with Paraplegia – a Review. Case Orthopedic Journal, 12 (1), 75-80.
  • Webster, V., Hawley, E., , Chiel, H., &  (2016). Effect of actuating cell source on locomotion of organic living machines with electrocompacted collagen skeleton. Bioinspiration and Biomimetics [17483182], 11 (3).
  • Chang, S., Nandor, M., Kobetic, R., Foglyano, K., , & Triolo, R. D. (2016). Improving stand-to-sit maneuver for individuals with spinal cord injury. Journal of neuroengineering and rehabilitation, 13 (1), 27.
  • Webster, V., Nieto, S., Grosberg, A., , Chiel, H., &  (2016). Simulating muscular thin films using thermal contraction capabilities in finite element analysis tools. Journal of the Mechanical Behavior of Biomedical Materials [17516161], 63 , 326-336.
  • Hunt, A., Schmidt, M., Fischer, M., &  (2015). A biologically based neural system coordinates the joints and legs of a tetrapod. Bioinspiration & biomimetics, 10 (5), 055004.
  • Mirletz, B., Bhandal, P., Adams, R., Agogino, A., , & SunSpiral, V. D. (2015). Goal-Directed CPG-Based Control for Tensegrity Spines with Many Degrees of Freedom Traversing Irregular Terrain. Soft Robotics,&²Ô²ú²õ±è;2&²Ô²ú²õ±è;(4),&²Ô²ú²õ±è;165–176.
  • Horchler, A., Kandhari, A., Daltorio, K., Moses, K., Ryan, J., Stultz, K., Kanu, E., Andersen, K., Kershaw, J., , &  (2015). Peristaltic Locomotion of a Modular Mesh-Based Worm Robot: Precision, Compliance, and Friction. Soft Robotics,&²Ô²ú²õ±è;2&²Ô²ú²õ±è;(4),&²Ô²ú²õ±è;135–145.
  • Horchler, A., Daltorio, K., Chiel, H., &  (2015). Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinspiration & biomimetics, 10 (2), 026001.
  • Daltorio, K., Mirletz, B., Sterenstein, A., Cheng, J., Watson, A., Kesavan, M., Bender, J., Martin, J., Ritzmann, R., &  (2015). How cockroaches exploit tactile boundaries to find new shelters. Bioinspiration & biomimetics, 10 (6), 065002.
  • Palmer, L., Diller, E., &  (2015). Toward Gravity-Independent Climbing Using a Biologically-Inspired Distributed Inward Gripping Strategy. IEEE Transaction on Mechatronics.
  • Horchler, A., , Chiel, H. A., &  (2015). Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinspiration \& biomimetics, 10 (2), 026001.
  • Foglyano, K., Kobetic, R., To, C., Bulea, T., Schnellenberger, J., , Nandor, M. L., , & Triolo, R. D. (2015). Hip Flexion Power Assist System for Use in Hybrid Neuroprostheses. Applied Bionics and Biomechanics, 205104 , 1-8.
  • Foglyano, K., Kobetic, R., To, C., Bulea, T., Schnellenberger, JR, T., Audu, M., Nandor, M., , & Triolo, R. D. (2015). Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses. APPLIED BIONICS AND BIOMECHANICS.
  • Szczecinski, N., Martin, J., Bertsch, D., Ritzmann, R., &  (2015). Neuromechanical model of praying mantis explores the role of descending commands in pre-strike pivots. Bioinspiration & biomimetics, 10 (6), 065005.
  • , Mirletz, B. A., Sterenstein, A. A., Cheng, J. A., Watson, A. A., Kesavan, M. A., Bender, J. A., Martin, J. A., Ritzmann, R. A., &  (2015). How cockroaches exploit tactile boundaries to find new shelters. Bioinspiration \& biomimetics, 10 (6), 065002.
  • Szczecinski, N., Brown, A., Bender, J., , & Ritzmann, R. D. (2014). A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.. Biological cybernetics, 108 (1), 1-21.
  • Long, Jr, J., Combes, S., Nawroth, J., Hale, M., Lauder, G., Swartz, S., , & Chiel, H. D. (2014). How Does Soft Robotics Drive Research in Animal Locomotion?. Soft Robotics,&²Ô²ú²õ±è;1&²Ô²ú²õ±è;(3),&²Ô²ú²õ±è;161–168.
  • Daltorio, K., Boxerbaum, A., Horchler, A., Shaw, K., Chiel, H., &  (2013). Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots.. Bioinspiration & biomimetics, 8 (3), 035003.
  • Kern, N., Triolo, R., Kobetic, R., , &  (2013). A convertible spinal orthosis for controlled torso rigidity. Applied Bionics and Biomechanics,&²Ô²ú²õ±è;10&²Ô²ú²õ±è;(1),&²Ô²ú²õ±è;59–73.
  • , Boxerbaum, A. A., Horchler, A. A., Shaw, K. A., Chiel, H. A., &  (2013). Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspiration \& biomimetics, 8 (3), 035003.
  • Daltorio, K., Tietz, B., Bender, J., Webster, V., Szczecinski, N., , Ritzmann, R. S., &  (2013). A model of exploration and goal-searching in the cockroach, Blaberus discoidalis. Adaptive Behavior,&²Ô²ú²õ±è;21&²Ô²ú²õ±è;(5),&²Ô²ú²õ±è;404–420.
  • , Tietz, B. A., Bender, J. A., Webster, V. A., Szczecinski, N. A., , Ritzmann, R. S., &  (2013). A model of exploration and goal-searching in the cockroach, Blaberus discoidalis. Adaptive Behavior, 21 (5), 404--420.
  • Boxerbaum, A., Shaw, K., Chiel, H., &  (2012). Continuous wave peristaltic motion in a robot. The International Journal of Robotics Research,&²Ô²ú²õ±è;31&²Ô²ú²õ±è;(3),&²Ô²ú²õ±è;302–318.
  • Boxerbaum, A., Klein, M., Kline, J., Burgess, S., , Harkins, R. D., & Vaidyanathan, R. D. (2012). Design, Simulation, Fabrication and Testing of a Bio-Inspired Amphibious Robot with Multiple Modes of Mobility. Journal of Robotics and Mechatronics, 24 (4), 629.
  • Vaidyanathan, R., Chen, C., Jeong, C., Williams, C., Endo, Y., Ritzmann, R., &  (2012). A reflexive vehicle control architecture based on a neural model of the cockroach escape response. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,&²Ô²ú²õ±è;226&²Ô²ú²õ±è;(5),&²Ô²ú²õ±è;699–718.
  • Bender, J., Simpson, E., Tietz, B., Daltorio, K., , & Ritzmann, R. D. (2011). Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis.. The Journal of experimental biology, 214 (Pt 12), 2057-64.
  • Rutkowski, A., Miller, M., , & Willis, M. D. (2011). Egomotion estimation with optic flow and air velocity sensors.. Biological cybernetics, 104 (6), 351-67.
  • Lewinger, W., &  (2011). Neurobiologically-based control system for an adaptively walking hexapod. Industrial Robot: An International Journal,&²Ô²ú²õ±è;38&²Ô²ú²õ±è;(3),&²Ô²ú²õ±è;258–263.
  • Bender, J., Simpson, E., Tietz, B., , , & Ritzmann, R. D. (2011). Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis. Journal of Experimental Biology, 214 (12), 2057--2064.
  • Kern, N., , Triolo, R., &  (2011). Compliant Bodies Provide Increased Agility in Mobile Robots. IEEE/RSJ Conference on Intelligent Robots and Systems.
  • , Wei, T. A., Horchler, A. A., Southard, L. A., Wile, G. A., , Gorb, S. D., & Ritzmann, R. D. (2009). Mini-whegs TM climbs steep surfaces using insect-inspired attachment mechanisms. The International Journal of Robotics Research, 28 (2), 285--302.
  • Gorb, S., Sinha, M., Peressadko, A., , &  (2007). Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspiration \& biomimetics, 2 (4), S117.
  • , Gorb, S. A., Peressadko, A. A., Horchler, A. A., Wei, T. A., Ritzmann, R. A., &  (2007). Microstructured polymer adhesive feet for climbing robots. MRS bulletin, 32 (6), 504--508.
  • Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., &  (). In a soft worm robot, circumferential stiffness increases forward locomotion velocity, whereas bending stiffness increases turning angle. .

Additional Information

Roger D. Quinn is the Arthur P. Armington Professor of Engineering at ÐÇ¿Õ´«Ã½. He joined the Mechanical and Aerospace Engineering department in 1986 after receiving a Ph.D. (1985) from Virginia Tech and M.S. (1983) and B.S. (1980) degrees from the University of Akron.  He is a Fellow of ASME. He won the ÐÇ¿Õ´«Ã½ University Distinguished Research Award in 2019. He has directed ÐÇ¿Õ´«Ã½ Biologically Inspired Robotics since its inception in 1990 and graduated approximately 100 graduate students in the field, some of whom have reached leadership positions in industry and academics.  His research, in collaboration with biologists including Profs. Roy Ritzmann and Hillel Chiel, is devoted to the development of robots and control strategies based upon biological principles and modeling animal neuromechanical systems. Dozens of robots have been developed to either improve robot performance with biological principles or model animal systems to better understand them. He has authored more than 300 full-length publications and 9 patents on practical devices resulting from his work.  His biology-engineering collaborative work on behavior based distributed control, robot autonomy, human-machine interfacing, soft robots, and neural control systems have each earned awards.