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simplified model that is not statistical or stochastic. That is, the

model did not determine the statistical relationship between the

variables explicitly. In this work, we perform this important

aspect of cell encapsulation, where we also include cell radius as

a predictor in one of the three models. We developed statistical

models to determine the relationship between the number of cells

per droplet (denoted NCPD henceforth), and the following

parameters: (i) cell concentration in the ejection fluid, (ii) droplet

size, and (iii) cell size in terms of radius. The models can also be

used to predict and control NCPD. Furthermore, we develop

stochastic models for total volume of cells per droplet based on

the above statistical models, hence the three parameters

considered. To the best of our knowledge this is attempted for
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2.2. Stochastic and statistical modeling of number of cells per

droplet

We hypothesized that the number of cells per droplet (NCPD)

highly depends on the droplet radius, cell radius, and cell

concentration in the suspension. To test this hypothesis, we

developed mathematical models to understand the stochastic

processes for NCPD and the total cell volume (per droplet). We

also assessed empirically these models by fitting them to the

experimental data. For count data, usually the relationship

between the mean and the variance is determined as Var(Yi) =

tmi, where Yi is the count variable with mean mi and t is the

dispersion parameter. Depending on the values of t, two sets of

models are used. If t equals one (i.e., not significantly different

than one), a Poisson regression model (a generalized linear

model (GLM) model) with logarithm function as the canonical

link function and Poisson distributed errors41 was fit to the data.

When t is significantly different than one, other GLMs such as

the negative binomial model are more appropriate.42 Our data

are consistent with the underlying assumptions for a GLM

model.

In the models, we used NCPD as the response (or dependent)

variable and the other variables (see Table 3) as the predictor (or

independent) variables in the GLM procedures. We applied a

model selection procedure to obtain a concise and descriptive

model (with the least number of variables possible, but with a

high explanatory power). We started with a model containing all

the variables (called ‘‘full model’’) with some non-linear terms

that were added to reflect the significant relationship between

NCPD and the predictor variables. The full model is then reduced

using a stepwise backward elimination procedure together with

Akaike Information Criteria (AIC),43 i.e. some insignificant

variables were removed until each of the remaining variables has

a significant effect on the NCPD at a = 0.05 level.

The underlying assumptions, model selection procedure, and

some of the discussion on the model diagnostics for each model

that we consider are detailed in the ESI{ for brevity in

presentation; as they are also peripheral for the main message

and results of this article.

3. Results and discussion

3.1. Modeling NCPD as a function of cell concentration and droplet
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cell concentration (i.e., if the cell concentration increases by 1 mil

ml21). That is, a one-unit increase in cell concentration causes

the expected NCPD to increase by a factor of exp(0.1890) =

1.2081, holding XDR constant. Notice also that the effects of the

cell concentration and droplet radius are both strong in

estimating NCPD, but that of the droplet radius is much greater.

Based on the diagnostic plots in Fig. 3, we observe that model

assumptions are satisfied for Model D-C2. Hence, when the cell

radius is fixed or its variation is negligible compared to that of

the other variables (i.e., when the variance of the cell radius is

much smaller compared to those of other variables), Model

D-C2 can be used to estimate the NCPD values for a given droplet

radius and a cell concentration (within the variable ranges given

in Table 3). For example, with a droplet radius of 500 mm and

cell concentration of 5 mil ml21, we estimate the
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Furthermore, the droplet radius has a stronger influence on

NCPD compared to the cell radius.

Based on the diagnostic plots presented in Fig. 3, we observe

that model assumptions are valid in this case. Hence, when the

cell radius is considered, Model D-C3 is a good alternative to

estimate the NCPD values for a given droplet radius and cell

radius, at the cell concentrations tested in this study (1, 2, 4, 8,

and 16 mil ml21). That is, if one wants to use these cell

concentration values in a cell encapsulation experiment, Model

D-C3 can be employed. For example, for a droplet radius of

500 mm, a cell concentration of 1 mil ml21 and a cell radius of

15 mm, we estimate the expected NCPD to be

Fig. 3 Diagnostic plots for Model D-C2 (top row), Model D-C3 (middle row) and Model R2-C2 (bottom row). The deviance residuals versus

predicted values (left) and the normal QQ-plot for deviance residuals versus theoretical quantiles, where the straight line passes through the first and

third quartiles (right).
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E(NCPD)~4:8345|109|1:0372500|0:2019
ffiffiffiffiffiffi

500
p

|0:1686
ffiffiffiffi

15
p

|1:359415~12

On the other hand, Model D-C2 is also applicable to any cell

concentration value within 1–16 mil ml21 range. However, for

concentration values other than 1, 2, 4, 8, and 16 mil ml21, one

can also estimate NCPD values with linear interpolation. For

example, at XDR = 500 mm and XCR = 10 mm, Model D-C3

estimates NCPD value to be 22 for XCC = 4 mil ml21 and 105 for

XCC = 8 mil/ml. Then, at the same XDR = 500 mm and XCR =

10 mm values, for XCC = 5 mil ml21, by linear interpolation, we

obtain NCPD&22z
5{4

8{4

� �

(105{22)~42:75.

3.3. Modeling NCPD as a function of cell concentration and the

ratio of droplet radius to cell radius (Model R2-C2)

We modelled NCPD as a function of XCC and ratio of droplet

radius to cell radius for each cell, called the radius ratio and

denoted XRR. Negative binomial regression is more appropriate

here, since Var(NCPD
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at cell concentration XCC = 1 mil ml21 and increases by a factor

of 1.2489 at cell concentration XCC = 8 mil ml21. Therefore, we

can conclude that the influence of cell radius is statistically

http://dx.doi.org/10.1039/c2lc40523g
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