B

IJ

: A

(Received 29 December 2007; accepted 29 September 2008; published online 15 October 2008)

Ш IJ IJ  $\mathbf{r}^{\prime\prime}$ ц Ц Ш IJ IJ IJ Ľ l Ш Ш I I IJ T

л п п п I I п

### ΙΟΟΙ

**ч** Ш

- 1

Ш ן ע t L I. L Ш Ш Ш Ш I Ш Ш in vivo Ţ in vitro T IJ Ш

IJ IJ IJ Į. ţ IJ IJ Ш Ш IJ Ш IJ U U IJ Ш IJ Į. Ţ

### Structure and Function of Bone Marrow



FIGURE 1. (a) Layout of bone marrow in a cross-sectional view of a tubular bone. Bone (B) is surrounding the bone marrow (BM). Central artery (CA) and central vein (CV) are running parallel to each other and longitudinally along the long bone (perpendicular to the plane of the page). The central artery and central vein branch toward the periphery to form arterioles (A) and sinusoids (S) which then combine and join with the central vein. Hematopoietic space (H) is interspersed by the sinuses. Developing red blood cells and granulocytic cells appear in the hematopoietic space. Megakaryocytes develop subjacent to the endothelium of marrow sinuses. It is possible to observe the radial distribution of marrow as the yellow marrow in the central regions and the red marrow in the periphery (Adapted from Tavassoli and Yoffey<sup>104</sup> and reprinted with permission of John Wiley & Sons, Inc.). (b) A toluidine-blue stained section taken transversely to the longer axis of a tubular bone. The micrograph displays the endosteal junction between bone and marrow (1253). The distribution of abundant number of red blood cells indicates that the bone marrow is hematopoietic (Courtesy of David C. Van Sickle, Purdue University).





L II

IJ IJ Ш Ш IJ I Ш Ш 4 4 1 I Ш IJ IJ IJ Ţ IJ IJ IJ

#### HE ECHA ICA E I E FBEA

#### Hydrostatic Pressure

Ш Ш Ţ Ш Ш I IJ Ш IJ Ш T л Г IJ IJ Ш Ţ Ш Ţ Ţ L IJ Ţ

Ш IJ Ш I IJ IJ ... I IJ IJ Ш ШШ IJ Ш IJ IJ υ IJ IJ Ш Ш IJ U U

*」* et al Ш IJ Ш IJ ţ Ţ I IJ IJ IJ IJ T Ш IJ Ļ - I Ţ IJ Ţ T IJ Ţ L et al IJ л Г IJ Ш Ţ IJ Ш IJ Ţ et al Ш L IJ Ш IJ \_

T

TABLE 1. Blood pressure and intramedullary pressure (IMP) values reported in the literature.

IJ

|                                      |              | Blood pressure                          |               | IMP                     |              |
|--------------------------------------|--------------|-----------------------------------------|---------------|-------------------------|--------------|
|                                      | Animal       | Location                                | Value (mmHg)  | Location                | Value (mmHg) |
| Stein .96,a                          | Dog          | Femoral artery                          | 110–140       | Tibial diaphysis        | 25–75        |
| Shaw <sup>90,a</sup>                 | Cat          | Contralateral femoral or carotid artery | 130           | Femoral diaphysis       | 37           |
| Azuma <sup>3,a</sup>                 | Rabbit       | Carotid artery                          | 100–110       | Femur or tibia          | 25 (4–70)    |
| Michelsen <sup>55,a</sup>            | Rabbit       | Carotid artery                          | 73–118        | Tibia                   | 18–36        |
| Harrelson and Hill <sup>32,a</sup>   | Mongrel dogs | Femoral artery contralateral            | 110–140       | Mid-diaphysis of femur  | 35           |
|                                      | 0 0          | Femoral vein contralateral              | 2             | . 5                     |              |
| Shim . <sup>92,a</sup>               | Rabbit       | Carotid artery                          | 120           | Femur                   | 20–60        |
|                                      | Dog          | Carotid artery                          | 130           | Femur                   | 40-120       |
| Wilkes and Visscher <sup>121,b</sup> | Dog          | Femoral artery                          | 134.0 ( 13.2) | Tibia                   | 23 ( 5.3)    |
|                                      |              | Nutrient vein                           | 19.3 ( 6.3)   |                         |              |
| Tondevold . <sup>108,a</sup>         | Mongrel dogs | Left brachial artery                    | 112.9 ( 0.9)  | Femoral epiphysis       | 30.7 ( 2.6)  |
|                                      |              |                                         |               | Femoral metaphysis      | 20.5 ( 1.5)  |
|                                      |              |                                         |               | Femoral diaphysis       | 25.7 ( 1.7)  |
| Thomas . <sup>107,a</sup>            | Rabbit       | Not measured                            | -             | Lower femoral diaphysis | 33 (7–81)    |
| Bauer and Walker <sup>5,a</sup>      | Dog          | Not measured                            | -             | Femoral diaphysis       | 27.6 ( 15.4) |
|                                      | 0            |                                         |               | Femoral metaphysis      | 17.6 (10.5)  |
|                                      |              |                                         |               | Tibial diaphysis        | 26.4 (13.0)  |
|                                      |              |                                         |               | Tibial metaphysis       | 17.9 (11.8)  |
|                                      |              |                                         |               | Humeral diaphysis       | 26.2 (15.8)  |
|                                      |              |                                         |               | Humeral metaphysis      | 13.4 (7.7)   |
|                                      |              |                                         |               | Radial diaphysis        | 15.4 (18.9)  |
| Stevens .97,c                        | Mouse        | Not measured                            | -             | Femur                   | 10.7 ( 1.4)  |

<sup>a</sup>IMP was measured with a cannula inserted into the bone in anesthetized animals.

<sup>b</sup>IMP was measured with a tonometric pressure transducer in anesthetized dogs.

<sup>c</sup>IMP was measured by radiotelemetry in unanesthetized ambulatory mouse.

TABLE 2. The effects of occlusion, epinephrine, norepinephrine, vasodilators, vasoconstrictors and skeletal muscle contraction on intramedullary pressure (IMP) and systemic blood pressure.

4

|                                                     | Occlusion |        |             |                | Drugs       |                 | Skeletal muscle contraction |            |
|-----------------------------------------------------|-----------|--------|-------------|----------------|-------------|-----------------|-----------------------------|------------|
|                                                     | Arterial  | Venous | Epinephrine | Norepinephrine | Vasodilator | Vasoconstrictor | Abdominal                   | Lower limb |
| Stein .96,a                                         |           |        | >           | >              | fl          | >               |                             |            |
| Shaw <sup>90,a</sup>                                | fl        | fi     | >           | >              | fl          | >               |                             |            |
| Azuma <sup>3,a</sup>                                | fi        | fi     | > fl        |                | fl> fi      |                 |                             | fi         |
| Michelsen <sup>55,a,b</sup>                         | fl        | >      |             | >              | fl> fi      |                 |                             |            |
| Shim . <sup>92,b</sup><br>Stevens . <sup>97,c</sup> | fi        | fi     | fl          | >              |             |                 | fi                          | fi         |

, , : Increase, decrease or no change in IMP; >, fl, fi : Increase, decrease or no change in systemic blood pressure; or > fl: First increase, then decrease or vice versa; vasodilator: acetylcholine, benzyl-imidazoline; vasoconstrictor: amphetamine, histamine.  $^{a}$ IMP was measured with a cannula inserted into the bone in anesthetized animals.

<sup>b</sup>Blood pressure was measured at the femoral artery; vasodilator (acetylcholine) was injected into femoral artery.

<sup>c</sup>IMP was measured by radiotelemetry in unanesthetized ambulatory mouse.

All injections were made intravenously; systemic blood pressures were measured at the carotid artery.

11 11 IJ IJ T IJ IJ I IJ IJ Ţ T Т -I IJ IJ IJ IJ

ן י ע ע ו ע

ע ו ע ע ע ע

υ υ υ υ υ υ υ υ υ υ υ υ υ

ע ע ע ע ע

μ μ μ μ μ μ μ

IJ IJ IJ IJ I I in vivo \_ IJ IJ 1 IJ IJ IJ L IJ Ш IJ Ш IJ IJ Ш IJ

س س ا<sup>س</sup> س ۱ ۱ ۱

и и и и и

Ш

Ш Ш L 1 T л Т I. L IJ Т лл IJ Ш IJ -I IJ IJ Ш IJ Ţ л л I IJ л л I IJ Ш Ţ T Ш Ш Ш -IJ Ш Ш Ш Ш Ш Ш Ш Ш Ш T. IJ Ш et al Ш

T l Ll Ш Ш Ţ Ш Ш Ш Ш Ш

## Rheology

- л л -I - L Ш Ш
- Ţ IJ Ш Ш I. Ш Ш
- IJ L IJ ţ IJ I
- 4 Ш ן ד<sup>ע</sup> IJ IJ Ш Ш
- I. et al л Г • 1 Ш IJ Ш
- Ш



Ш IJ Ш

Ţ

υ υ υ et al υ υ υ

Dasypus novemcinctus D

L L IJ IJ I. IJ IJ Ш Ш L IJ ן ע Ţ Ш IJ I. I Ш Ш Ш IJ IJ Ш

# E E A I F E CE HE

- л л 1 1 л л л 1 л 1 1 л 1 1 л 1

# in vitro

in vivo

- ן ן ע ע ע <sub>00</sub>00 ע ע ו
- ц ц ц ц ц
- μ I in vivo μ
  - . . . .

# Hydrostatic Pressure

т т<sup>и</sup> IJ IJ Ш Ш D Ţ Ш Ш ţ in vitro IJ IJ IJ IJ I 1<sup>D</sup> IJ Ш

- - μ μ<sup>μ</sup>μμ**in-vitro**
  - ו ו שש in vitro ש
- in-vivo
- u in-vivo u u u u u
- с, Ш Ш ,, I

# Fluid Shear

u u I

u u in vitro u u

<sup>и</sup> 1

4

ע ו ע ען ע ע ע ע ע ע ע ע

in vitro

# AC EDG E

ш ш ц ц ц ц ц ц

## EFE E CE

 $\mathbf{r}_{\mu} = \mathbf{r}_{\mu} = \mathbf{r}_{\mu}$ 

# Angiology

J. Cell. Physiol.

Stem Cells

Scand. J. Clin. Lab. Invest.

J. Biomech.

J. Biomech.  $\mu$ 

Bone

Dev. Cell

#### Cell. Physiol. $\Box$ , Ш - -· – Ш Gene Ш Ш Biomed. Mater. Eng.

# J. Biomed. Biotechnol.

, Ш и а

Ш

- J. Bone Joint Surg. Am. Å л л Ш IJ Ш IJ Ш Br. J. Radiol. Ш Ш . . J. Bone Joint<sup>'</sup>Surg. Am. А
- Ш J. Bone I.
- Miner. Res. , Ш
- Ш <sup>*u*</sup> Bone Ш Ш I Ш Ш
- <sup>*u*</sup> BMC Musculoskelet. Disord. Ш --л л л J. Bone
- Miner. Res.

4