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I
n the control of batch distillation columns, one of the problems is the difficulty in moni-
toring the compositions. This problem can be handled by estimating the compositions
from readily available online temperature measurements using a state estimator. In

this study, a state estimator that infers the product composition in a multicomponent batch
distillation column (MBDC) from the temperature measurements is designed and tested
using a batch column simulation. An extended Kalman filter (EKF) is designed as the state
estimator and is implemented for performance investigation on the case column with eight
trays separating the mixture of cyclo-hexane, n-heptane and toluene. EKF parameters of
the diagonal terms of process noise covariance matrix and those of measurement model
noise covariance matrix are tuned in the range where the estimator is stable and selected
basing on the least IAE score. Although NC-1 temperature measurements is sufficient consid-
ering observability criteria, using NC measurements spread through out the column homo-
geneously improves the performance of EKF estimator. The designed EKF estimator is
successfully used in the composition—feedback inferential control of MBDC operated
under variable reflux-ratio policy with an acceptable deviation of 0.5–3% from the desired
purity level of the products.
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INTRODUCTION

‘Batch distillation is generally used as a separation unit in
the fine speciality chemicals, pharmaceuticals, biochemical
and food industries. The demand and the uncertainty in
specifications for these chemicals has increased recently,
which increased the popularity of the use of batch distilla-
tion’ (Barolo and Cengio, 2001; Kim and Ju, 1999). Instead
of using many continuous columns in series, multiple pro-
ducts can be obtained from a single batch distillation
column during a single batch run. Moreover, batch distilla-
tion processes can easily handle variations both in the
product specifications and in the feed compositions. This
flexibility of batch distillation processes provides the ability
to cope with a market characterized by short product life
times and strict specification requirements.

In batch distillation, the operation of the column with
optimized operation scenario; including reflux ratio
policy, switching times, and method of recycling, is
required to be realized in a convenient control system.
However, in order to employ the operation scenario; the
designed controller will require continuous information

flow from the column, including the compositions through-
out the column or temperatures reflecting the composition
knowledge. The reason for this requirement is that, the
value of reflux ratio and switching between product and
slop cut distillations are optimized which are subject to
the composition profile along the column and obtained as
a function of it. Therefore, the need for knowledge of
current composition in the column becomes obvious.

The composition knowledge can be generated by means of
direct composition analysers in the control of a batch distil-
lation column. Although there is a great development in the
technology of online composition analysers, such as gas
chromatography, they bring large measurement delays and
high investment and maintenance costs (Mejdell and
Skogestad, 1991; Oisiovici and Cruz, 2000; Venkateswarlu
and Avantika, 2001). The most popular alternative to the
composition controllers utilizing analysers is standard
temperature feedback controllers. Although temperature
measurements are inexpensive and have negligible measure-
ment delays, they are not accurate indicators of composition
(Mejdell and Skogestad, 1991). Another alternative is infer-
ential control systems incorporating state estimators which
use secondary temperature measurements.

State estimation can be defined as the process of
extracting information from data which contain valuable
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derivation and variations in the molal tray holdup will be
provided by variations in the liquid density that is a func-
tion of composition, temperature and pressure. Instead of
using ideal tray assumption, to represent the non-ideality
in the phase equilibrium, Murphree tray efficiency formu-
lation is employed assuming the temperature equilibria
between the vapour and the liquid phases. Consequently,
the basic assumptions made in the simulation model devel-
opment are summarized in Table 1.

EXTENDED KALMAN FILTER

The EKF is defined as ‘optimal recursive data processing
algorithm’ (Maybeck, 1979), handling the estimation issues
in the nonlinear system theory. EKF uses the nonlinear
model of the system given by equation (1)

_x(t) ¼ f (x(t), u(t), t) þ G(t)w(t) (1)

where f is the vector of the nonlinear system functions and
the noise process, w(t) is modelled as white Gaussian noise
with statistics

E{w(t)} ¼ 0 (2)

E
�
w(t)w(t0)T

�
¼

Q(t), t ¼ t0

0, t = t0

�
(3)

and the nonlinear measurement model written as

z(tk) ¼ h½ x(tk), tk� þ v(tk) (4)

where h is the vector of the nonlinear measurement func-
tions and the noise process, v(tk) is modelled as white
Gaussian noise with statistics

E{v(tk)} ¼ 0 (5)

E
�
v(tk)v(tl)

T
�
¼

R(t), tk ¼ tl

0, tk = tl

�
(6)

The EKF has a two-step recursive calculation algorithm.
The first named as the propagation stage is responsible to
calculate the prediction of the state at the current time
using the best state estimate at the previous time step.
The second is named as the update stage and updates the
prediction found in the first stage using the measurements
taken from the actual process and calculates the best state
estimate. The propagation stage integrates the state and
error covariance derivatives (see Table 4: Propagation

Table 1. Assumptions made in the model development.

Negligible vapour holdup
Constant volume of tray liquid holdup
Constant liquid molar holdup in the reflux-drum
Total condenser
Negligible fluid dynamic lags
Linear pressure drop profile
Murphree tray efficiency
Approximated enthalpy derivatives
Adiabatic operation

Table 2. Summary of MBDC rigorous model equations.

Compositions and holdups
Reboiler dynamics

M1 ¼ M0
f �

PNTþ2

n¼2

Mn �
ÐNT

¼ M



section) from the previous time step tk�1 to the current time
tk and uses the best state estimate x̂þ(tk�1) and its error
covariance Pþ(tk�1) at the previous time step tk�1, in
order to calculate the prediction of the state, x̂�(tk) and
its error covariance P�(tk) at the current time step tk. The
update stage utilizes the equations given in Table 4
(Update section), and updates the prediction of the
state x̂�(tk) and its error covariance P�(tk) at the current
timestep tk.



Lastly, in order to initiate the EKF algorithm, the
information of initial conditions is required and stated by
x̂0 for the states and by P0 for the error covariances.

As a result, the nonlinear models for the system and for
the temperature measurements are to be developed in the
form required for EKF algorithm. However, the model
developed for rigorous simulation of the batch column
is not suitable for realistic situation in order to be
implemented in EKF algorithm. For the reason that it is
difficult to obtain the required values of vapor and liquid
flowrates and tray holdups with time. In addition, the
complexity of the simulation model requires high compu-
tational time and memory. Therefore, the rigorous
column model for simulation is to be simplified and then
the obtained nonlinear model is to be linearized to achieve
the Jacobian matrix both for the system and the measure-
ment processes.

Model Simplification and Linearization

Some additional assumptions are needed for the simplifi-
cation of the rigorous simulation model of MBDC. These
assumptions are constant molar holdup on trays, disregard
of the energy dynamics in the column, ideal trays, and
use of Rault’s Law with Antoine’s vapour pressure corre-
lation for vapour–liquid equilibrium (VLE) description.
As a result, the vapour flowrates throughout the column
become equal as well as the liquid flowrates. The simplified
model equations for MBDC are given in Table 5.

Next, the nonlinear models in EKF given by equations
(1) and (4) are defined in terms of states, inputs and outputs
of the column-simplified-model by equations (10) to (16) as

_x(t) ¼ f (x(t), u(t), t) þ w(t) (10)

where

x ¼ ½x11 . . . x1NC, . . . , xNTþ2,1 . . . xNTþ2,NC�
T (11)

f ¼ ½_x11 . . . _x1NC, . . . , _xx ¼ ½x

�
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are evaluated analytically. Their expanded forms and the
details of the derivation are given by Yıldız (2002).

Consequently, all the information required for EKF esti-
mator has been obtained. This information incorporates
nonlinear and linearized models for the system of MBDC
and the measurement process given respectively by
f , h, F0, H 0.

DESCRIPTION OF CASE COLUMN

The case column for simulation is the one which was
simulated by Mujtaba and Macchietto (1993) in their
study on the subject of optimal operation of MBDC. The
column is used to separate the mixture of cyclo-hexane,
n-heptane and toluene. The sketch of the column can be
seen in Figure 1 and the design specifications of the
column are listed in Table 6.

The batch distillation column is under the perfect control
of reflux-drum level and has two degrees-of-freedn036(degre)-9(es 0 Tf
T*94n)-61nipmulationQ1

ratio,



As a result it is decided that in the model develop-
ment, the most important part is the selection of VLE
formulation.

Implementation of EKF

The simulation test runs for tuning the EKF is done with-
out considering any changes in VLE relationship of the
EKF model because VLE relationship does not change
the effects of tuning parameters on the performance of
EKF. Further, it is aimed to obtain the optimum values
for these parameters in the worst case (i.e., process/
model mismatch). The tuning parameters for EKF are the
diagonal terms of process noise covariance matrix, q, and
the diagonal terms of measurement model noise covariance
matrix, r. Also, the effect of number of measurement
points, and measurement period, Dtm will be illustrated. It
is known that, in initialization of the EKF, initial estimates
vector, x0 and its error covariance vector, P0 are also
important. These will be discussed also.

In all of the simulation test runs, the integral absolute
error (IAE) is chosen as the performance criteria reflecting
the fitness of the EKF design parameters. The formulation
of IAE between the actual and the estimated fractions of a
component is given in equation (21)

IAEi ¼

ðT

0

jXi(t) � xi(t)j dt (21)

where Xi(t) is the estimated composition of ith component,
xi(t), the actual one and T, the total time of batch. In the per-
formance evaluation, instead of analysing the IAE scores of
each component separately, the sum of the IAE scores of the
components is selected. Moreover, this total score is calcu-
lated both for the reflux-drum and the reboiler composition
estimations as given by equations (22) and (23)

IAERD ¼
XNC

i¼1

IAEi (22)

IAERB ¼
XNC

i¼1

IAEi (23)

where IAERD and IAERB are the performance scores in the
estimation of the reflux-drum and the reboiler compositions,
respectively. As a result, the optimum value of the con-
sidered design parameter is obtained from the simulation
run giving the lowest sum of IAERD and IAERB values. The
optimum value of the diagonal terms of process noise covari-
ance matrix, q is searched in the range where the EKF estima-
tor is stable. Performing some trial runs, the stability region
of the estimator is found where the value of q is in the range
of 50 and 1 � 1027. This region is searched by changing the
value of q in 10 folds. For r ¼ 5000, the change of IAE scores
with q is given in Figure 4.

The diagonal terms of measurement model noise covari-
ance matrix, r are changed between 0.5 and 5 � 108

increasing in 10 folds and in each run, the diagonal terms
of process noise covariance matrix, q is selected as
0.00001 which was previously determined as optimal. As
in the case of q, the searching region for r is also deter-
mined by means of the stability concept. Figure 5 presents
the relation of IAE sum with respect to r, graphically. The

Figure 3. Mismatch between the modified process model and the EKF
model.

Figure 4. Change of IAE sum with respect to q.

Figure 5. Change of IAE sum with respect to r.
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best result (i.e., one having the lowest IAE sum) is obtained
for the diagonal terms of process noise covariance matrix,
q ¼ 5000 as shown in Figure 6.

The previous runs were done, utilizing three measure-
ment points for temperatures as stated by Quintero-
Marmol et al. (1991). Several extra runs with one to five
measurement points were also conducted in which optimal
values for the diagonal terms of process noise covariance
matrix, q and the diagonal terms of measurement model
noise covariance matrix, r are used, to see the effects of
measurement points in EKF performance. Firstly, to
decide on the number of measurement points, homo-
genously spreading the locations of the measurements
throughout the column resulted in the IAE sums given in
Table 8. The run having the lowest IAE sum is obtained
as the one with three measurement points. In addition, the
run with two measurements, which is the minimum
number of measurements satisfying the observability
criteria, has an IAE score, larger than that of the runs
with more measurements and it has an IAE less than that
of one-measurement run which is the only run violating



column. The response for initial state estimate, x0 ¼ [1/3; 1/
3; 1/3] and the diagonal terms of its error covariance vector,
P0 ¼ 0.1 is shown in Figure 10. This is a fictitious compo-
sition for feed when the feed composition is not known. Of
course, in this run the deviations in estimation are higher
than the previous cases, giving IAE sum of 1.8797. However,
they can still be considered agreeable in a case where feed
composition is not known. Moreover, the estimations can
also be improved with trial-and-error using different tuning
parameters for the case of unknown feed composition.

Closed-Loop Performance of EKF

In this phase of the study, it is aimed to analyse the per-
formance of the EKF estimator for a MBDC system in a
composition-feedback inferential control structure which

realizes an actual scheduling policy explained previously
in the section entitled MBDC Operation, where reflux-
ratio is adjusted to a pre-optimized value with the use of
top product composition information. In this control law,
the compositions in the reflux-drum, the product-cut tanks
and the reboiler are the inputs to the controller and the
manipulated variable is the reflux-ratio of the column.
The pre-specified reflux-ratio values required for the con-
trol algorithm is chosen as the optimized ones used in the
previous sections. The tank, to which the distillate stream
is diverted, and its timing are decided by monitoring the
input compositions to the controller and utilizing the
actual reflux-ratio policy. In the simulation of this control
structure, the compositions can be obtained directly from
the process simulation or from the EKF estimator. Firstly,
to create a reference point, a simulation is done, taking
the composition knowledge directly from the column as
the feedback information to the controller. The desired pro-
duct purities are the set points of the controller which are
taken as 0.9, 0.81, 0.69. The response of this reference
run in terms of the liquid compositions, both in the
reflux-drum and the reboiler are given in Figure 11.

The capacity factor (CAP) (Luyben, 1988) and batch





affecting the performance of the EKF estimator is the selec-
tion of the VLE formulation. EKF parameters of the diag-
onal terms of process noise covariance matrix and the
diagonal terms of measurement model noise covariance
matrix are tuned in the range where the estimator is
stable and selected basing on the least sum of individual
IAE scores for the reflux-drum and the reboiler compo-
sition estimates. It is also found that, increasing the
number of temperature measurements above the rec-
ommended value of NC does not result in a better perform-
ance. Although the observability criterion makes NC 2 1

temperature measurements sufficient, using NC measure-
ments improves the performance of EKF estimator. The
measurement locations must be spread through out the
column homogeneously for a better performance. Decreas-
ing the measurement period value increases the estimator
performance, and is limited by the computational power
of the digital computer especially in real-time applications.
The designed EKF estimator is successfully used in the
composition—feedback inferential control of MBDC oper-
ated under variable reflux-ratio policy with an acceptable
deviation of 0.5–3% from the desired purity level of the

Figure 11. The closed-loop responses of the MBDC under the scheduling controller with actual composition feedback. (a) Reflux-drum compositions;
(b) reboiler compositions.

Figure 12. The closed-loop responses of the MBDC under the scheduling controller with estimated composition feedback. (a) Reflux-drum compositions;
(b) reboiler compositions.
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products. The method proposed in the study utilizes a very
simple model for EKF which is tested in a typical batch dis-
tillation column for estimation of states and which can also
be utilized in continuous distillation columns easily.

NOMENCLATURE


